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Molecular and cellular MR imaging is a rapidly growing field aiming to visualization 
of macromolecules and cells in living organisms (1). These techniques allow in vivo 
monitoring of cell transplantation, transduction and migration, and until now they have been 
employed mainly by researchers for evaluation of cell trafficking, correction mechanisms 
and therapeutic efficacy in different animal models of human diseases. However, once novel 
therapeutic approaches, such as cellular and gene therapies, demonstrate to be useful and 
safe in pre-clinical models of Central Nervous System (CNS) disorders, molecular and 
cellular MR imaging might play an important role also in clinical practice, since accurate 
delivery and/or homing of cells to target organs is crucial for clinical success. Above all, the 
possibility to perform longitudinal studies on living subjects makes molecular and cellular 
MR imaging a helpful tool in both pre-clinical and clinical settings. 

Neural Stem Cells (NSC) have recently raised interest because of their therapeutic 
potential in both cell-based and gene therapy applications. NSC are a heterogeneous 
population of immature progenitors, mitotically active, multipotent and self-renewing, 
present during development and in adult brain, both in primates and rodents (2-3). NSC can 
be cultured and grown in vitro, and, once transplanted in vivo, are able to generate a 
differentiated progeny capable of integrating and repairing the damaged neural tissue. This 
approach have been successfully employed in different CNS pathologies. In order to 
reconstitute the neural population in the substantia nigra that is progressively lost in 
Parkinson disease, NCS transplantation have been attempted in both animals and humans 
(4). NSC transplantation has been demonstrated to be useful also in animal models in 
traumatic lesions of the spinal cord (5), and in ischemic and hemorragic brain lesions (6,7). 
Further, intravenous injection of NSC induces recovery in a murine model of multiple 
sclerosis (8). Recent evidences suggest that endogenous neurogenesis can be exploited in 
adult brain in vivo for therapeutic purposes. Endogenous NSC can be modified in vivo, and 
thus recruited to damaged brain areas, where their progeny can differentiate and integrate in 
the tissue, replacing damaged or lost neurons (9-10). To this regard, the possibility to use 
viral vectors, such as lentiviruses (LV), to obtain sustained and long-term expression of 
therapeutic or trophic factors in NSC and their progeny is of particular interest (11). 

Knowing the location of either delivered or genetically modified NSC in cell-based 
or gene therapy approaches is of utmost importance to assess therapeutic efficacy and 
analyze mechanisms of correction and cell distribution, and may represent a crucial step 
toward clinical application in humans. Diverse imaging approaches are available to track 
NSC, such as bioluminescence, fluorescence, and nuclear medicine approaches. Compared 
with these other techniques, MRI shows a greater resolution, allows direct anatomic 
correlation on the same image and can be performed and repeated several times on living 
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animals (1). Dynamic migration of transplanted or transduced stem cells and, alternatively, 
of gene expression can thus be studied during clinically useful time periods.  
In order to make cells detectable at MR examinations, different strategies have been 
developed. The underlying rationale is to induce different signal intensities between labeled 
cells and not-targeted tissues. Gadolinium chelates and liposomes were the first to be 
employed for this purpose (12). However, nowadays gadolinium compounds are no more 
frequently used for cellular imaging applications since these agents exhibit low relaxivities 
that further decrease upon cellular internalization. Moreover, little is known about their 
potential toxicity following cellular dechelation over time (1). On the other hand, the 
development of Superparamagnetic Iron Oxides (SPIO) allowed a significant increase in the 
sensitivity of cellular and molecular MRI. These ferromagnetic agents are MRI negative 
contrast agents composed of a core of iron oxide nanoparticles, made of thousands of iron 
atoms, that create wide disturbances in the local magnetic field, leading to a rapid dephasing 
of protons and consequently to signal loss. Further, these contrast media are biodegradable 
along biochemical pathways for normal iron metabolism. The crystalline core is surrounded 
by a dextran or carboxi-destran (13). Some SPIO agents, such as Endorem (Guebert)  and 
Resovist (Shering) are already FDA-approved and widely used for liver MR imaging and for 
neuroimaging (14,15). Sinerem (Guebert) is on phase III-B, while other ultrasmall iron 
oxides particles such us CLIO (cross-linked iron oxide) and MION (monocrystalline iron 
oxide nanoparticles) are only for research purposes. All these SPIO agents differ for 
composition and diameter of the iron nanoparticle core. The demonstration that these SPIO 
can be internalized also by non-phagocitic cells made them the ideal MRI-sensitive tags for 
labeling mammalian cells (16). In order to be labeled, cells are to be grown ex vivo in a 
SPIO-containing culturing media. Cellular uptake can be further increased with different 
strategies, the easiest by mixing SPIO with transfection agents or protamine (17,18), that 
ameliorate the electrostatic interaction between iron particles and cellular membrane. Others 
and we tested labeling efficiency and toxicity of different commercially available SPIO 
contrast media (i.e. Endorem, Resovist and  Sinerem) at different concentrations, on  human 
and murine NSC, in the presence or absence of poli-L-lysine (PLL). After SPIO-labeling cell 
viability, differentiation and proliferation were completely preserved, while MRI relaxivity 
parameters (T2 and T2*) were significantly affected by the presence of these SPIO within 
cell bodies and showed linear decrease along with the cytoplasmatic iron content. In our and 
others experience, among different SPIO, Resovist turned out to be the most sensitive 
negative contrast media, even in the absence of transfection agents (19). Iron intra-cellular 
content may be semi-quantitatively evaluated with MR by calculating T2 and T2* maps. 
Precise quantification can be obtained using corrected T2* mapping technique, that balances 
the overestimation of the relaxation rate R2* due to large scale field inhomogeneities (20). 
These results indicate this method as suitable for tracking studies. 

Several groups used this or similar efficient labeling strategies for in vivo magnetic 
tracking of different cell types in several animal models of CNS disorders. By magnetic 
labeling, it was possible to monitor non invasively the migration of intra-cisternally 
transplanted NSC into ischemic lesion in rodents with experimental stroke (21). Similarly, 
after intraventricular injection, labeled NSC migration into demyelinating lesions was 
monitored in a mouse model of multiple sclerosis. In this context, the rate of labeled NSC 
migration was assessed and correlated to the degree of inflammation (22-23). A critical issue 
is whether this labeling strategy may affect the functional properties of NSC. To this regard, 
it has been shown that olfactory ensheating cells and olygodendrocyte precusors, once 
labeled, retain their therapeutic potential and are able to myelinate normally after 
transplantation (24-25).  



It has been recently shown by our co-investigators that NSC, when administered 
intravenously, have an unexpected capability of crossing the blood brain barrier, and 
selectively reach the multiple sites of myelin damage within the injured CNS of 
Experimental Autoimmune Encephalomyelitis (EAE) mice. This finding was associated to 
an overt clinical benefit (8). In order to better dissect these events, we monitored CNS 
homing of intravenously transplanted, labeled NSC with MRI. Adult NSC were labeled with 
Resovist (0.2mg/ml) and then injected into the bloodstream of symptomatic Experimental 
EAE mice. Starting from day 1 after transplantation, labeled cells were detected in the brain, 
within previously MR documented demyelinating lesions. Cells were still detectable up to 15 
days after transplantation. These findings were confirmed by histopathology. To directly 
assess the feasibility of this strategy in its future human applications, these experiments were 
performed using human MR scanners (1.5 and 3 Tesla), since magnetic susceptibility 
increases in high field animal dedicated bores. Detection of labeled cells in animal models 
by standard 1.5T scanners has also been reported in literature by other groups (26). Clinical 
application of cellular tracking with SPIO has been recently achieved. De Vries and co-
workers monitored migration to lymphonodes of SPIO labeled dendritic cells in melanoma 
patients, thus providing the first evidence of safety and feasibility of this technique in 
humans (27). Overall, these results constitute proof of principle that MRI might allow 
tracking of labeled NSC in vivo in the human brain.  

This labeling strategy for MR cellular imaging, which demonstrated to have great 
potential for clinical use, has however some major limitations that deserve discussion. As all 
other negative MR contrast agents, SPIO determine a local area of signal loss. They create a 
“black hole” that prevents direct anatomical MR evaluation, and that can be easily mistaken 
for other susceptibility artifacts (1). Most importantly, progressive dilution of SPIO upon 
cell division occurs. The ex vivo endocytosed iron nanoparticles are progressively lost during 
cell division after transplantation, and labeled cells become no more detectable after three or 
four mitosis. Thus, despite the great efficacy demonstrated for short term monitoring, SPIO 
cannot be used for studying the long-term fate of highly proliferating cells such as stem cells. 
MR markers for stable, robust and long-lasting cell labeling, capable to persist along with 
cell division, are still to be developed. 

We are addressing this crucial issue with an alternative approach,  based on LV and 
MR reporter genes, allowing accumulation of magnetic material, such as melanin or iron, 
within cells. With this approach we might also non-invasively monitor gene expression in 
vivo. LV are powerful tools for gene transfer and therapy. These vectors are capable of 
transducing dividing and non-dividing cells with high efficiency. They integrate in the 
genomic DNA of target cells and allow long-term expression of a reporter or therapeutic 
gene. Most importantly, the cDNA that have been inserted in the host genome is duplicated 
at the time of mitosis together with cellular chromosomes and transmitted to the progeny of 
transduced cells, thus enabling long-term persistence of gene expression along with cell 
division. Candidate MR reporter genes, encoding proteins detectable with MRI, comprise 
tyrosinase and intracellular ferritins. The former is an enzyme that catalyzes two 
fundamental reactions during melanin synthesis. Tyrosinase over-expression might induce 
melanin accumulation in non melanotic cells. Melanin itself has a high iron-binding capacity 
that is responsible for intensified MR signals (28). Intracellular ferritins, which have an 
extraordinary high superparamagnetism within the crystalline ferrihydrite core, can be used 
as MR reporter since they enable intracellular iron accumulation. The first direct proof of 
MR in vivo visualization of gene expression came recently (29). Genove and co-workers 
expressed H and L ferritin by adenoviral vectors in striatal neurons upon direct 
intraparenchimal injection of the vector, and made these cells detectable by MR. However, 



since the vector used does not integrate in the cellular genome, and can be lost as SPIO along 
with cell division, it cannot be used for long-term tracking, particularly of highly 
proliferating stem cells. To overcome this limitation, we constructed LV carrying these 
candidate MR reporter genes and tested them in vitro on neural and hematopoietic stem 
cells. Moreover, a bi-directional LV (30), allowing simultaneous expression of two 
transgenes within the same cell, was constructed, encoding tyrosinase and green fluorescent 
protein (GFP), the latter as conventional reporter gene. After transduction and several cell 
divisions, cells remained detectable in T2 and T2* weighted images. No toxicity was 
documented, and stem cells proliferating and differentiating capacities were preserved. 
Further, the mono and bi-cistronic, tyrosinase-encoding LV were tested in vivo in the CNS. 
After direct vector injection into the striatum of wild type mice, a distinct MR signal was 
detected at the injection site, thus validating tyrosinase as MR reporter in vivo. These data 
suggest that tyrosinase encoding LV might represent potential new tools for tracking either 
transplanted or in vivo transduced NSC in normal or pathologic conditions. Moreover, if 
associated to a therapeutic gene in the bi-directional LV, our MR reporter could allow 
monitoring of therapeutic gene expression in disease models.  

In conclusion, as soon as cellular and gene therapies will become clinically available 
for CNS disorders, SPIO and, in the long run, MR reporter genes will constitute fundamental 
tools for in vivo monitoring of cell fate and gene expression.  
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